Меню Рубрики

Что такое углеводная паренхиматозная дистрофия

Углеводы, которые определяются в клетках и тканях и могут быть иденти-
фицированы гистохимически, делят на полисахариды, из которых в жи-
вотных тканях выявляется лишь гликоген, мукополисахариды
(гликозаминогликаны) и гликопротеиды. К гликозаминоглика-
нам относят полисахариды, содержащие гексозамин. Нейтральные гли-
козаминогликаны прочно связаны с белками. К кислым гликоза-

миногликанам относятся гиалуроновая кислота, хондрои-
тинсерная кислота и гепарин, которые как биополимеры
способны вступать в непрочные соединения с рядом метаболитов и осущест-
влять их транспорт. Главными представителями гликопротеидов
являются муцины и мукоиды. Муцины составляют основу слизи, про-
дуцируемой эпителием слизистых оболочек и железами. Мукоиды входят
в состав многих тканей. Они в большом количестве имеются в эмбрио-
нальных тканях, сохраняясь в пупочном канатике у новорожденных;
у взрослых находятся в клапанах сердца, стенке артерий, сухожилиях, хряще.

Полисахариды, гликозаминогликаны и гликопротеиды выявляются ШИК-реакцией (реак-
цией с шиффовым основанием — йодной кислотой) или реакцией Хочкиса — Мак-Мануса. Сущ-
ность реакции заключается в том, что после окисления йодной кислотой (при ШИК-реакции
перйодатом) образующиеся альдегиды дают с фуксином Шиффа красное окрашивание. Для выя-
вления гликогена ШИК-реакцию дополняют ферментативным контролем — обработкой сре-
зов амилазой, с помощью которой гликоген из тканей удаляется и красное окрашивание исче-
зает. Гликоген окрашивается кармином Беста в красный цвет. Так как гликоген хорошо
растворим в воде, ткани, исследуемые на содержание гликогена, необходимо предохранять от
воздействия водных растворов и фиксировать в безводном спирте, ацетоне и др. Гликозами-
ногликаны и гликопротеиды определяют с помощью ряда методов, из которых наибо-
лее часто применяют окраски толуидиновым синим или метиленовым синим. Эти окраски поз-
воляют выявлять хромотропные вещества, дающие реакцию метахромазии. Обработка
срезов ткани гиалуронидазами (бактериальной, тестикулярной) с последующей окраской теми
же красителями позволяет дифференцировать различные гликозаминогликаны.

Паренхиматозная углеводная дистрофия может быть связана с наруше-
нием обмена гликогена или гликопротеидов.

Углеводные дистрофии, связанные с нарушением обмена гликогена

Вводимый с пищей гликоген подвергается ферментативному гидролизу
с образованием глюкозы, сгорание которой доставляет организму необходи-
мую энергию. Циркулируя в крови, глюкоза переносится в ткани, где полиме-
ризуется в гликоген. Основные запасы его находятся в печени и скелетных
мышцах. Гликоген печени и мышц расходуется в зависимости от потребно-
стей организма (лабильный гликоген). Гликоген нервных клеток, про-
водящей системы сердца, аорты, эндотелия, эпителиальных покровов, слизи-
стой оболочки матки, соединительной ткани, эмбриональных тканей, хряща,
лейкоцитов является необходимым компонентом клеток, и его содержание не
подвергается заметным колебаниям (стабильный гликоген). Однако
деление гликогена на лабильный и стабильный условно.

Регуляция обмена углеводов осуществляется нейроэндокринным путем.
Основная роль принадлежит гипоталамической области, гипофизу (АКТГ, ти-
реотропный, панкреотропный гормоны), (З-клеткам (В-клеткам) поджелудоч-
ной железы (инсулин), надпочечникам (глюкокортикоиды, адреналин) и щито-
видной железе.

Нарушения содержания гликогена проявляются в уменьшении или
увеличении его в тканях и появлении там, где он обычно не выявляется. Эти
нарушения наиболее ярко выражены при сахарном диабете и при на-
следственных углеводных дистрофиях— гликогенозах.

При сахарном диабете, развитие которого связывают с патологией
вырабатывающих инсулин (3-клеток островков поджелудочной железы, проис-
ходит недостаточное использование глюкозы тканями, увеличение ее содержа-
ния в крови (гипергликемия) и выведение с мочой (г л ю к о з у р и я).
Тканевые запасы гликогена резко уменьшаются. Это в первую очередь касает-
ся печени, в которой нарушается синтез гликогена, что ведет к инфильтрации
ее жирами — развивается жировая дистрофия печени.

Pис. 8. Почка при сахарном диабете.

а — гликоген в эпителии и просвете канальца узкого сегмента (на рисунке зерна гликогена черные);

6 — отложения полисахаридов и белков плазмы в мезангии (интеркапиллярный гломерулосклероз).

С глюкозурией связаны характерные изменения почек при диабете. Они
выражаются в гликогенной инфильтрации эпителия каналь-
цев, главным образом узкого и дистального сегментов. Эпителий становится
высоким, со светлой пенистой цитоплазмой; зерна гликогена видны и в про-
свете канальцев (рис. 8). Эти изменения отражают состояние синтеза гликоге-
на (полимеризация глюкозы) в канальцевом эпителии при резорбции богатого
глюкозой ультрафильтрата плазмы.

При диабете страдают не только почечные канальцы, но и клубочки, их
капиллярные петли, базальная мембрана которых становится значительно бо-
лее проницаемой для Сахаров и белков плазмы. Возникает одно из проявле-
ний диабетической микроангиопатии — интеркапиллярный (диабе-
тический) гломерулосклероз (см. рис. 8).

Наследственные углеводные дистрофии, в основе ко-
торых лежат нарушения обмена гликогена, называются
гликогенозами. Гликогенозы обусловлены отсутствием или недостаточ-
ностью фермента, участвующего в растеплении депонированного гликогена,
и относятся поэтому к наследственным ферментопатиям, или
болезням накопления. В настоящее время хорошо изучены 6 типов
гликогенозов, обусловленных наследственной недостаточностью 6 различных
ферментов. Это болезни Гирке (I тип), Помпе (II тип), М а к-
Ардля (V тип) и Герса (VI тип), при которых структура накапливае-
мого в тканях гликогена не нарушена, и болезни Форбса-Кори (III тип)
и Андерсена (IV тип), при которых она резко изменена (табл. 3).

При различных гликогенозах отмечается избирательная локализация накоплений гликогена:
при болезни Гирке — в печени и почках, при болезни Помпе — в гладких и скелетных мышцах
и миокарде, при болезни Мак-Ардля — только в скелетных мышцах, а при болезни Герса —
только в печени. При болезни Форбса — Кори «гликоген с короткими цепями» накапливается
в печени, миокарде, мышцах, при болезни Андерсена «гликоген с длинными цепями», похожий
на растительные полисахариды (пектиды), депонируется в селезенке, печени, лимфатических
узлах.

Таблица 3
Гликогенозы (наследственные ферментопатии, болезни накопления)
Название болезни Дефицит фермента Локализация накоплений гликогена
Без нарушения структуры гликогена
Гирке (I тип) Помпе (IIтип) Мак-Ардля (V тип) Герса (VI тип) Глюкозо-6-фосфатаза Кислая а-глюкозидаза Система фосфорилаз мышц Фосфорилаза печени Печень, почки Гладкие и скелетные мышцы, миокард Скелетные мышцы Печень
С нарушением структуры гликогена
Форбса —Кори, лимитдекстри- ноз (IIIтип) Андерсена, амилопектиноз (IV тип) Амило-1,6-глюкозидаза Амило-( 1,4 — 1,6)-трансглю- козидаза Печень, мышцы, сердце Печень, селезенка, лимфатиче- ские узлы

Морфологическая диагностика гликогеноза того или иного типа возможна
при биопсии и с помощью гистоферментативных методов.

Дата добавления: 2014-11-20 ; Просмотров: 626 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Дистрофия наряду с некрозом относится к процессам альтерации (повреждения).

Дистрофия — это патологический процесс, в основе которого лежит нарушение метаболизма клеток и тканей, что ведет к структурным нарушениям. Причинами дистрофий являются расстройства ауторегуляции клетки, нарушение работы транспортных систем организма (кровь, лимфа) и нарушение нейрогуморальной регуляции обмена веществ. Сейчас считается, что все эти факторы ведут к нарушению ферментных систем клетки. Поэтому можно сказать, что в широком смысле слова все дистрофии — это ферментопатии.

Отписано 4 механизма развития дистрофий:

1. Инфильтрация — избыточное проникновение продуктов обмена из крови и лимфы в клетки или межклеточное вещество и накопление их там. Например: инфильтрация глюкозой эпителия почечных канальцев при сахарном диабете, с последующим синтезом гликогена.

2. Декомпозиция — распад клеточных структур и межклеточного вещества с накоплением продуктов распада в клетке.

3. Извращенный синтез — синтез и накопление в клетках необычных веществ, которые в норме там не встречаются. Например: синтез гликогена из глюкозы в эпителии почечных канальцев при сахарном диабете; образование амилоида при амилоидозе.

4. Трансформация — образование продуктов одного вида обмена из общих исходных продуктов. Например: превращение компонентов жиров и углеводов в белки.

Классификация дистрофий.

I. В зависимости от локализации процесса:

=>Паренхиматозные дистрофии развиваются в высокоспециализированных клетках (паренхиме).

=>Мезенхимальные — развиваются в строме и сосудах.

=>Смешанные — и в паренхиме и в строме.

II. По преобладанию нарушений того или иного вида обмена:

III. В зависимости от влияния генетических факторов:

Паренхиматозные дистрофии

Это дистрофии, при которых изменения встречаются преимущественно в паренхиме органов. Различают белковые, жировые и углеводные паренхиматозные дистрофии.

Белковые паренхиматозные дистрофии

К ним относят: зернистую, гиалиново-капельную, гидропическую и роговую дистрофии.

При зернистой дистрофии в цитоплазме клеток появляются белковые зерна. Эта дистрофия встречается обычно в почках, печени и сердце. Клетки при этом увеличиваются, набухают. Органы, пораженные этой дистрофией, увеличены в размерах, дряблые. Эта форма дистрофии обратима. Если устранить причину, вызывающую дистрофию, клетки восстановят свой нормальный вид. Если патогенный фактор продолжает действовать, то зернистая дистрофия может перейти в гиалиново-капельную и гидропическую.

При гиалиново-капельной дистрофии в цитоплазме клеток появляются гиалиноподобные белковые капли. Эта форма дистрофии необратима. Встречается в почках, реже — в печени (при алкогольном гепатите синтезируется алкогольный гиалин — тельца Маллори) и в миокарде. При этой форме дистрофии функция органа нарушается.

При гидропической дистрофии в клетках появляются вакуоли, заполненные цитоплазматической жидкостью. Встречается в эпидермисе кожи (при оспе), в канальцах почек, в клетках печени, коры надпочечников. Исход неблагоприятный — гибель клетки. Клетки превращаются в заполненные жидкостью балоны (балонная дистрофия) и гибнут.

Роговая дистрофия — это избыточное образование рогового вещества в ороговевающем эпителии (то есть там, где роговое вещество встречается и в норме — ихтиоз, гиперкератоз) или образование рогового вещества там, где его в норме не бывает (патологическое образование рогового вещества в плоскоклеточном раке).

Паренхиматозные жировые дистрофии

Чаще всего поражаются почки, печень и сердце. Одной из основных причин жировой дистрофии является кислородное голодание (гипоксия), поэтому она встречается обычно при заболеваниях сердечно­сосудистой системы, легких, анемиях. В мышечных клетках сердца появляются капли жира различных размеров, которые постепенно замещают цитоплазму клеток. Сердце внешне может не изменяться (если дистрофия выражена слабо) или (при выраженной жировой дистрофии) быть дряблым, увеличенным в объеме, на разрезе иметь тусклый вид. Со стороны эндокарда может выявляться желто-белая поперечная исчерченность, особенно заметная в папиллярных мышцах — «тигровой сердце». В печени капли жира имеют различные размеры. Печень увеличена, дряблая, желтого цвета. В почках обычно поражается эпителий канальцев. Почки увеличены, набухшие, дряблые.

Паренхиматозные углеводные дистрофии

Могут быть связаны с нарушением обмена гликогена или гликопротеидов.

Нарушения обмена гликогена встречаются при сахарном диабете. При этом заболевании отмечается абсолютная или относительная недостаточность инсулина. Нарушается утилизация глюкозы и синтез гликогена. В результате повышается содержание глюкозы в крови (гипергликемия), появляется глюкоза в моче (глюкозурия), истощаются запасы гликогена в печени и мышцах. В связи с гипергликемией и гликозурией происходит инфильтрация глюкозой канальцевого эпителия почек и синтез гликогена в эпителии канальцев, где его в норме не бывает.

При нарушении обмена гликопротеидов в клетках накапливаются муцины и мукоиды (слизеподобные вещества). Это наблюдается обычно при воспалительных процессах в слизистых оболочках. При этом количество слизи, вырабатываемой клетками слизистых оболочек, резко возрастает, изменяются ее физико-химические свойства. Такая слизь может закрывать просветы бронхов, протоки желез. Иногда продуцируются слизеподобные коллоидные вещества — при коллоидном зобе щитовидной железы. Заканчивается процесс атрофией слизистых оболочек. Гистохимической окраской на гликопротеиды является ШИК — реакция.

источник

связана с нарушением обмена гликогена или гликопротеидов.

Основные запасы гликогена находятся в печени и скелетных мышцах.

Нарушения содержания гликогена проявляются в уменьшении или увеличении количества его в тканях и появлении там, где он обычно не выявляется. Эти нарушения наиболее ярко выражены при сахарном диабете и при наследственных углеводных дистрофиях – гликогенозах.

При сахарном диабете, развитие которого связывают с патологией ?-клеток островков поджелудочной железы, что обусловливает недостаточную выработку инсулина, происходит недостаточное использование глюкозы тканями, увеличение ее содержания в крови (гипергликемия) и выведение с мочой (глюкозурия). Тканевые запасы гликогена резко уменьшаются. Это в первую очередь касается печени, в которой нарушается синтез гликогена, что ведет к инфильтрации ее жирами – развивается жировая дистрофия печени; при этом в ядрах гепатоцитов появляются включения гликогена, они становятся светлыми («пустые» ядра).

За счёт усиления процессов гликогенолиза, обусловленного инсулинопенией, запасы гликогена в депо(особенно в гепатоцитах) уменьшаются, что способствует развитию жировой дистрофии клеток. При этом в ядрах гепатоцитов появляются включения гликогена. В то же время в почках (вследствие синтеза в цитоплазме гликогена) возникает вызванная гиперглюкозурией «гликогенная инфильтрация» эпителия проксимальных канальцев. Уменьшение кол-ва гликогена в клетках возможно при гипоксии любого генеза (например, в мышцах после физ.нагрузки), но эти изменения носят транзиторный характер.

11.Паренхиматозные углеводные дистрофии связанные с нарушением обмена глюкопротеидов. Слизистая (коллоидная) дистрофия. Морфологическая характеристика, патогенез.

При нарушении обмена гликопротеидов в клетках или в межклеточном веществе происходит накопление муцинов и мукоидов, называемых также слизистыми или слизеподобными веществами.

Микроскопически. Многие секретирующие клетки погибают, выводные протоки желез обтурируются слизью, что ведет к развитию кист. Нередко в этих случаях присоединяется воспаление. Слизь может закрывать просветы бронхов, следствием чего является возникновение ателектазов и очагов пневмонии.

Иногда в железистых структурах накапливается не истинная слизь, а слизеподобные вещества (псевдомуцины). Эти вещества могут уплотняться и принимать характер коллоида. Тогда говорят о коллоидной дистрофии, которая наблюдается, например, при коллоидном зобе.

Причины слизистой дистрофии разнообразны, но чаще всего это воспаление слизистых оболочек в результате действия различных патогенных раздражителей (катаральное воспаление).

Слизистая дистрофия лежит в основе наследственного системного заболевания, называемого муковисцидозом, для которого характерно изменение качества слизи, выделяемой эпителием слизистых желез: слизь становится густой и вязкой, она плохо выводится, что обусловливает развитие ретенционных кист и склероза (кистозный фиброз). Поражаются экзокринный аппарат поджелудочной железы, железы бронхиального дерева, пищеварительного и мочевого тракта, желчных путей, потовые и слезные железы. Исход в значительной мере определяется степенью и длительностью избыточного слизеобразования. В одних случаях регенерация эпителия приводит к полному восстановлению слизистой оболочки, в других – она атрофируется, в дальнейшем склерозируется, что, естественно, отражается на функции органа.

Слизистая дистрофия. При нарушениях обмена гликопротеинов в клетках происходит накопление муцинов и мукоидов (слизистая дистрофия), что, как правило, отмечается при воспалении слизистых оболочек. Продуцируемая избыточно слизь может вызвать закупорку протока или, например, бронха с развитием слизистых кист, ателектазов. Накопление слизеподобных веществ в ряде случаев приводит к коллоидной дистрофии, что наблюдается при коллоидном зобе.

12) МЕЗЕНХИМАЛЬНЫЕ (СТРОМАЛЬНО-СОСУДИСТЫЕ) БЕЛКОВЫЕ ДИСТРОФИИ: МУКОИДНОЕ НАБУХАНИЕ, ФИБРИНОИДНОЕ НАБУХАНИЕ, ГИАЛИНОЗ КАК СТАДИИ ЕДИНОГО МОРФОЛОГИЧЕСКОГО ПРОЦЕССА. Причины, патогенез, исходы. Стромально-сосудистая дистрофия – это нарушение обмена в соединительной ткани, преимущественно в ее межклеточном веществе, накопление продуктов метаболизма. Мезенхимальные дистрофии (в зависимости от вида нарушенного обмена) делятся на белковые (диспротеинозы), жировые (липидозы) и углеводные. Среди диспротеинозов различают:

мукоидное набухание Поверхностная и обратимая дезорганизация соединительной ткани. Характеризуется накоплением в основном веществе соединительной ткани гликозоаминогликанов (преимущественно гиалуроновой кислоты), что приводит к повышению сосудисто-тканевой проницаемости и выходу мелкодисперсных плазменных белков — альбуминов.

Механизм развития— инфильтрация.

Мукоидное набухание чаще встречается в стенках артериол и артерий, клапанах сердца, пристеночном эндокарде.

Макроскопическая картина: орган или ткань обычно не изменены.

Микроскопическая картина: выявляется феномен метахромазии, особенно с толуидиновым синим: в фокусах мукоидного набухания видно накопление гликозоаминогликанов, дающих метахроматичное (сиреневое) окрашивание.

К факторам, вызывающим мукоидное набухание, относятся: гипоксии (гипертоническая болезнь, атеросклероз), иммунные нарушения (ревматическая болезнь, эндокринные нарушения, инфекционные заболевания).

фибриноидное набухание В основе лежит деструкция основного вещества и волокон соединительной ткани, сопровождающаяся резким повышением сосудистой проницаемости и выходом грубодисперсных плазменных белков, в первую очередь фибриногена с последующим превращением в фибрин.

Механизм развития— инфильтрация и декомпозиция.

В зоне фибриноидных изменений выявляются деструкция коллагеновых волокон и фибрин.

Процесс необратимый, завершается фибриноидным некрозом, гиалинозом, склерозом.

гиалиноз Характеризуется накоплением в тканях плотных полупрозрачных масс, напоминающих гиалиновый хрящ.

Возникает в исходе фибриноидного набухания, плазморрагии, склероза, некроза.

Гиалин — сложный фибриллярный белок.

Механизм образования гиалина складывается из разрушения волокнистых структур и пропитывания их фибрином и другими плазменными компонентами (глобулинами, b-липопротеидами, иммунными комплексами и пр.).

Выделяют гиалиноз собственно соединительной ткани и гиалиноз сосудов; оба эти вида гиалиноза могут быть распространенными и местными.

Примером местного гиалиноза собственно соединительной ткани, развившегося в исходе мукоидного набухания и фибриноидных изменений, является гиалиноз створок клапанов сердца при ревматизме (ревматический порок сердца). Распространенный гиалиноз артериол возникает при гипертонической болезни и сахарном диабете как исход плазморрагии. При гипертонической болезни вследствие гиалиноза артериол развивается артериолосклеротический нефросклероз, или первично-сморщенные почки: маленькие плотные почки с мелкозернистой поверхностью и резко истонченным корковым слоем. Исход в большинстве случаев неблагоприятный, но возможно и рассасывание гиалиновых масс.

амилоидоз – Характеризуется появлением в строме органов и в стенках сосудов не встречающегося в норме сложного белка амилоида.

13. Амилоидоз — это мезенхимальный диспротеиноз, сопровождающийся образованием в мезенхиме сложного вещества — амилоида. • Характеризуется появлением в строме органов и в стенках сосудов не встречающегося в норме сложного

Амилоид выпадает по ходу ретикулярных (периретикулярный амилоидоз) или коллагеновых (периколлагеновый амилоидоз) волокон.

Выраженный амилоидоз ведет к атрофии паренхимы и склерозу органов, что сопровождается развитием их функциональной недостаточности.

Амилоид состоит из фибриллярного белка (F-компонент), связанного с плазменными глюкопротеидами (Р-компонент).

Фибриллы амилоида синтезируются клетками — макрофагами, плазматическими клетками, кардиомиоцитами, гладкомышечными клетками сосудов, апудоцитами и др. из белков-предшественников. Классификация амилоидоза.

1. Классификация основанная на этиологическом принципе:

первичный (идиопатический), вторичный (приобретенный, реактивный), наследственный (генетический, семейный), старческий амилоидоз.

2. По распространенности процесса:

генерализованные формы: первичный, вторичный, наследственный, старческий амилоидоз;

локальные формы: инсулярная и церебральная формы старческого амилоидоза, АПУД-амилоид и др.

1) первичный (идиопатический) амилоидоз, возникающий без предшествующего «причинного» заболевания;

2) вторичный (реактивный) амилоидоз, возникающий как осложнение ряда болезней, сопровождающихся хроническим воспалением,— ревматоидного артрита, бронхоэктатической болезни, туберкулеза, остеомиелита, язвенного колита, болезни Крона и пр.

3) некоторые формы наследственного амилоидоза:

периодическая болезнь (семейная средиземноморская лихорадка) — заболевание с аутосомно-рецессивным типом наследования, характеризующееся рецидивирующими полисерозитами с болевым синдромом; болеют преимущественно армяне, евреи, арабы;

Морфологическая диагностика амилоидоза.

Макроскопическая диагностика амилоидоза:

при действии на ткань люголевского раствора и 10% серной кислоты амилоид приобретает сине-фиолетовый или грязно-зеленый цвет.

Микроскопическая диагностика амилоида:

а) при окраске гематоксилином и эозином амилоид представлен аморфными эозинофильными массами;

б) при окраске конго-красным (специфическая окраска на амилоид) амилоид окрашивается в кирпично-красный цвет;

При выраженном амилоидозе органы увеличиваются, становятся очень плотными и ломкими, на разрезе приобретают сальный вид.

• Амилоид откладывается в лимфоидных фолликулах, которые приобретают на разрезе вид полупрозрачных зерен — саговая селезенка (I стадия) или диффузно по всей пульпе — сальная селезенка (II стадия).

• Амилоид обнаруживается под эндокардом, в строме и сосудах. • Сердце резко увеличивается (кардиомегалия), становится плотным, приобретает сальный блеск.

• Развиваются сердечная недостаточность, нарушение ритма.

• Амилоид обнаруживается в базальной мембране эпителия, в стенках мелких сосудов; в виде очагов в строме подслизистого слоя.

• Проявляется синдромом мальабсорбции, диареей и пр.

14.мезенхимальные жировые дистрофии, связанные с нарушением обмена нейтрального жира. Нарушение обмена холестерина проявляется чаще атеросклерозом, который поражает крупные артерии. Нарушение обмена нейтральных жиров может проявиться увеличением запаса жира в жировых депо. Это может носить общий и местный характер. Общее увеличение нейтрального жира называется ожирением, или тучностью. При местном увеличении кол-ва жировой клетчатки говорят о липоматозах. Среди них наибольший интерес представляет: болезнь Деркума (полигландулярная эндокринопатия — узловатые болезненные отложения жира в подкожной клетчатке конечностей и туловища).

Читайте также:  Алиментарная дистрофия код мкб

По этиологическому принципу ожирение может быть первичным и вторичным. Виды вторичного ожирения:

алиментарное (несбалансированное питание, гиподинамия),

церебральное (развивается при травме головного мозга, опухолях головного мозга, нейроинфекциях),

эндокринное (Иценко-Кушинга и др.),

По внешнему виду различают:

симметричное (универсальное) ожирение,

По морфологическим изменениям жировой ткани различают 2 варианта ожирения: —гипертрофический вариант (жировые клетки увеличены в объеме, течение болезни злокачественное); -гиперпластический вариант (увеличено число жировых клеток, течение болезни доброкачественное).

Значение ожирения: особенно опасно ожирение сердца, когда жир откладывается под эпикардом и между мышечными волокнами вызывая их атрофию. Больные умирают от разрыва сердца, недостаточности сердца.

источник

Иногда в клинической практике встречается такое явление, как паренхиматозные дистрофии. Патологическая анатомия относит их к нарушениям обмена в клетках. Если говорить простым языком, то в органе нарушается процесс питания и накопления полезных веществ, что приводит к морфологическим (визуальным) изменениям. Выявить такую патологию можно на секции или после серии высокоспецифических тестов. Паренхиматозные и стромально-сосудистые дистрофии лежат в основе многих летальных заболеваний.

Паренхиматозные дистрофии – это патологические процессы, которые ведут к изменениям структуры клеток органов. Среди механизмов развития заболевания выделяют расстройства саморегуляции клетки с энергетическим дефицитом, ферментопатии, дисциркуляторные расстройства (кровь, лимфа, интерстиций, межклеточная жидкость), эндокринные и церебральные дистрофии.

Различают несколько механизмов дистрофии:

— инфильтрацию, то есть избыточный транспорт продуктов обмена из крови внутрь клетки или межклеточное пространство, обусловленный сбоем в ферментных системах организма;

— декомпозиция, или фанероз, представляет собой распад внутриклеточных структур, который приводит к нарушению метаболизма и накоплению недоокисленных продуктов обмена веществ;

— извращенный синтез веществ, которые в норме клетка не воспроизводит;

— трансформация поступающих в клетку питательных веществ для построения какого-то одного вида конечных продуктов (белков, жиров или углеводов).

Патоморфологи выделяют следующие виды паренхиматозных дистрофий:

1. В зависимости от морфологических изменений:

2. По виду накапливаемых веществ:

— белковые или диспротеинозы;

3. По распространенности процесса:

Те или иные паренхиматозные дистрофии патологическая анатомия определяет не только по повреждающему агенту, но и по специфике пораженных клеток. Переход одной дистрофии в другую теоретически возможен, но практически возможна только сочетанная патология. Паренхиматозные дистрофии — это суть процесса, происходящего в клетке, но только часть клинического синдрома, который охватывает морфологическую и функциональную недостаточность определенного органа.

Человеческое тело по большей части состоит из белков и воды. Белковые молекулы являются составляющей клеточных стенок, мембраны митохондрий и других органелл, кроме того, они находятся в свободном состоянии в цитоплазме. Как правило, это ферменты.

Диспротеинозом иначе называют такую патологию, как паренхиматозная белковая дистрофия. И его суть состоит в том, что клеточные белки меняют свои свойства, а так же подвергаются структурным изменениям, таким как денатурация или колликвация. К белковым паренхиматозным дистрофиям относят гиалиново-капельную, гидропическую, роговую и зернистую дистрофии. О первых трех будет написано подробнее, а вот последняя, зернистая, характеризуется тем, что в клетках накапливаются зерна белка, из-за чего клетки растягиваются, а орган увеличивается, становится рыхлым, тусклым. Именно поэтому зернистую дистрофию еще называют тусклым набуханием. Но у ученых есть сомнения, что это паренхиматозная дистрофия. Патанатомия данного процесса такова, что за зерна можно принять компенсаторно увеличенные клеточные структуры, как ответ на функциональное напряжение.

При этом виде дистрофий в клетках появляются большие гиалиновые капли, которые со временем сливаются между собой и заполняют все внутреннее пространство клетки, вытесняя органеллы или разрушая их. Это приводит к потере функции и даже гибели клетки. Чаще всего заболевание встречается в почечной ткани, реже в печени и сердце.

Во время цитологического исследования после биопсии почек, помимо накопления гиалина в нефроцитах, обнаруживают деструкцию всех клеточных элементов. Это явление появляется, если у пациента развивается вакуолярно-лизосомальная недостаточность, которая приводит к уменьшению реабсорбции белков из первичной мочи. Чаще всего данная патология встречается при нефротическом синдроме. Наиболее часты диагнозы таких пациентов – гломерулонефрит и амилоидоз почек. Внешний вид органа при гиалиново-капельной дистрофии не изменяется.

В клетках печение дело обстоит несколько иначе. Во время микроскопии в них находят тельца Мэллори, состоящие из фибрилл и алкогольного гиалина. Их появление связано с болезнью Вильсона-Коновалова, алкогольным гепатитом, а также с билиарным и индийским циррозом. Исход этого процесса неблагоприятный – некроз клеток печени, утрата ее функции.

Этот вид дистрофий отличается от остальных тем, что в пораженных клетках появляются новые органеллы, наполненные жидкостью. Чаще всего такое явление можно заметить в коже и канальцах почек, в клетках печени, мышц и надпочечников.

Микроскопически клетки увеличены, их цитоплазму заполняют вакуоли с прозрачным жидким содержимым. Ядро смещается или лизируется, остальные структуры элиминируются. В конечном итоге клетка представляет собой «баллон», заполненный водой. Поэтому гидропическую дистрофию иногда называют баллонной.

Макроскопически органы практически не изменяются. Механизм развития этого заболевания – нарушение коллоидно-осмотического давления в клетке и в межклеточном пространстве. Из-за этого проницаемость клеток увеличивается, мембраны их распадаются и клетки погибают. Причинами таких химических изменений может стать гломерулонефрит, сахарный диабет, амилоидоз почек. В печени изменению клеток способствуют вирусные и токсические гепатиты. На коже гидропическая дистрофия может быть вызвана вирусом натуральной оспы.

Заканчивается этот патологический процесс фокальным или тотальным некрозом, поэтому морфология и функция органов быстро ухудшается.

Патологическое ороговение органов – это чрезмерное накопление рогового вещества в поверхностных слоях кожи, например, гиперкератоз или ихтиоз, а также появление рогового вещества там, где, как правило, его быть не должно – на слизистых оболочках (лейкоплакия, плоскоклеточный рак). Это процесс может быть как локальным, так и тотальным.

Причинами этого типа заболеваний могут быть нарушения эктодермального зачатка в процессе эмбриогенеза, хронические воспалительные изменения тканей, вирусные инфекции и недостаток витаминов.

Если лечение начать сразу после появления первых симптомов, то ткани еще могут восстановиться, но в далеко зашедших случаях выздоровление уже невозможно. Длительно существующие участки роговой дистрофии могут переродиться в рак кожи, а врожденный ихтиоз несовместим с жизнью плода.

Наследственные паренхиматозные дистрофии возникают из-за врожденных ферментопатий. Эти заболевания иначе называют болезни накопления, так как из-за нарушения метаболизма, продукты обмена веществ накапливаются в клетках и жидкостях организма, отравляя его. Наиболее известными представителями этой группы являются фенилкетонурия, тирозиноз, и цистиноз.

Органами-мишенями для фенилкетонурии являются центральная нервная система, мышцы, кожа и жидкости (кровь, моча). Продукты обмена при тирозинозе накапливаются в клетках печени, почек и костях. Цистиноз также поражает печень и почки, но, кроме них, страдает селезенка, глазные яблоки, костный мозг, лимфатическая система и кожа.

Липиды содержатся в каждой клетке, они могут находиться как отдельно, так и в комплексе с белками и быть структурными единицами мембраны клеток, а также других ультраструктур. Кроме того, в цитоплазме находится глицерин и жирные кислоты. Для того чтобы обнаружить их в тканях используются специальные методы фиксирования и окрашивания, например суданом черным или красным, осмиевой кислотой, сульфатом нильского голубого. После специфической подготовки препараты тщательно осматривают в электронный микроскоп.

Паренхиматозная жировая дистрофия проявляется в виде чрезмерного накопления жиров там, где они должны быть, и появления липидов там, где их быть не должно. Как правило, накапливаются нейтральные жиры. Органы мишени те же, что и при белковой дистрофии – сердце, почки и печень.

Жирова паренхиматозная дистрофия миокарда начинается с появления в миоцитах очень мелких капелек жира, т. н. пылевидное ожирение. Если процесс не останавливается на этом этапе, то со временем капли сливаются и становятся больше, пока не займут всю цитоплазму. Органеллы при этом распадаются, исчерченность мышечных волокон пропадает. Заболевание локально проявляется около венозного сосудистого русла.

Макроскопически паренхиматозная жировая дистрофия проявляется по-разному, все зависит от стадии процесса. В самом начале диагноз можно поставить только под микроскопом, но со временем сердце увеличивается за счет растягивания камер, стенки его становятся тонкими и дряблыми, при разрезе миокарда видны грязно-желтые полосы. Патофизиологи придумали название этому органу: «тигровое сердце».

Жировая дистрофия паренхиматозных органов развивается по трем основным механизмам.

  1. Повышенное поступление свободных жирных кислот в клетки миокарда.
  2. Нарушение жирового обмена.
  3. Распад липопротеидных структур внутри клетки.

Чаще всего эти механизмы запускаются во время гипоксии, инфекции (дифтерия, туберкулез, сепсис) и интоксикации организма хлором, фосфором или мышьяком.

Как правило, жировая дистрофия обратима, а нарушения клеточных структур восстанавливаются со временем. Но если процесс сильно запущен, то все заканчивается гибелью ткани и органа. Клиницисты различают следующие заболевания, связанные с накоплением жиров в клетках:

— болезнь Ниманна-Пика и другие.

Все углеводы, которые находятся в организме, можно разделить на полисахариды (самым распространенным из которых является гликоген), гликозаминогликаны (мукополисахариды: гиалуроновая и хондроитинсерная кислоты, гепарин) и гликопротеиды (муцины, т.е. слизь, и мукоиды).

Для того чтобы выявить углеводы в клетках организма, проводят специфический тест – ШИК-реакцию. Суть ее в том, что ткань обрабатывают йодной кислотой, а потом фуксином. И все альдегиды становятся красными. Если нужно выделить гликоген, то к реактивам добавляют амилазу. Гликозаминогликаны и гликопротеиды окрашиваются метиленовым синим. Паренхиматозные углеводные дистрофии связаны, как правило, с нарушением обмена гликогена и гликопротеидов.

Гликоген – это запасы организма на «черный голодный день». Основную их часть он хранит в печени и мышцах и расходует эту энергию очень экономно. Регулирование обмена углеводов происходит через нейроэндокринную систему. Главная роль отведена, как водится, гипоталамо-гипофизарной системе. В ней вырабатываются тропные гормоны, которые контролируют все остальные железы внутренней секреции.

Нарушением гликогенового обмена является увеличение или снижение его количества в тканях, а также появление там, где он быть не должен. Наиболее ярко такие изменения проявляются при сахарном диабете либо наследственных гликогенозах. Патогенез сахарного диабета довольно хорошо изучен: клетки поджелудочной железы перестают вырабатывать инсулин в необходимом количестве, и энергетические запасы клеток быстро истощаются, так как глюкоза не накапливается в тканях, а выводится из организма с мочой. Организм «вскрывает» свои резервы, и в первую очередь развивается паренхиматозная дистрофия печени. В ядрах гепатоцитов появляются светлые промежутки, и они становятся светлыми. Поэтому их еще называют «пустые ядра».

Наследственные гликогенозы вызваны нехваткой или отсутствием ферментов, участвующих в накоплении гликогена. В настоящее время известны 6 таких болезней:

Их дифференциальная диагностика возможна после биопсии печени и использования гистоферментного анализа.

Это паренхиматозные дистрофии, вызванные накоплением в тканях муцинов или мукоидов. Иначе эти дистрофии еще называют слизистыми или слизеподобными, из-за характерной консистенции включений. Иногда накапливаются на истинные муцины, а только похожие на них вещества, которые могут уплотняться. В таком случае идет речь о коллоидной дистрофии.

Микроскопия ткани позволяет определить не только факт наличия слизи, но и ее свойства. Из-за того, что остатки клеток, а также вязкий секрет препятствует нормальному оттоку жидкости из желез, образуются кисты, а содержимое их имеет тенденцию к воспалению.

Причины этого вида дистрофий могут быть самые разные, но чаще всего это катаральное воспаление слизистых. Кроме того, если наследственное заболевание, патогенетическая картина которого хорошо вписывается в определение слизистая дистрофия. Это муковисцидоз. Поражается поджелудочная железа, кишечная трубка, мочевыводящий тракт, желчные протоки, потовые и слюнные железы.

Разрешение данного вида заболеваний зависит от количества слизи и длительности ее выделения. Чем меньше времени прошло от начала патологического процесса, тем более вероятно, что слизистая восстановится полностью. Но в некоторых случаях наблюдается слущивание эпителия, склероз и нарушение функции пораженного органа.

источник

Полисахариды, гликозаминогликаны и гликопротеиды выяв­ляются ШИК-реакцией. Для выявления гликогена ШИК-реакцию дополняют ферментативным контролем — обработкой сре­зов амилазой. Гликоген окрашивается кармином Беста в красный цвет. Гликозаминогликаны и гликопротеиды определяют с помо­щью ряда методов, из которых наиболее часто применяют окра­ски толуидиновым синим или метиленовым синим. Эти окраски позволяют выявлять хромотропные вещества, дающие реакцию метахромазии.

Паренхиматозная углеводная дистрофия может быть связана с нарушением обмена гликогена или гликопротеидов.

Нарушение обмена гликогена.

Нарушения содержания гликогена проявляются в уменьше­нии или увеличении количества его в тканях и появлении там, где он обычно не выявляется. Эти нарушения наиболее ярко выражены при сахарном диабете и при наследственных углевод­ных дистрофиях — гликогенозах.

Гликогенозы обусловлены отсутствием или недостаточностью фермента, участвующего в расщеплении депонированного гли­когена, и относятся потому к наследственным ферментопатиям, или болезням накопления.

Углеводные дистрофии, связанные с нарушением обмена глико­протеидов.

При нарушении обмена гликопротеидов в клетках или в меж­клеточном веществе происходит накопление муцинов и мукоидов, называемых также слизистыми или слизеподобными веществами. В связи с этим при нарушении обмена гликопротеидов говорят о слизистой дистрофии.

Микроскопическое исследование позволяет выявить не толь­ко усиленное слизеобразование, но и изменения физико-хи­мических свойств слизи.

Исход в значительной мере определяется степенью и длитель­ностью избыточного слизеобразования. В одних случаях регенера­ция эпителия приводит к полному восстановлению слизистой оболочки, в других — она атрофируется, в дальнейшем склерози-руется.

Лекция 5 СТРОМАЛЬНО-СОСУДИСТЫЕ БЕЛКОВЫЕ ДИСТРОФИИ

Определейие

Мукоидное набухание

Фибриноидное набухание

Гиалиноз Амилоидоз соединительной тканиимеются три основных типа волокон: коллагеновые, ретикулиновые и эластиновые.

Синтез нового коллагена — неотъемлемая часть процесса ре­генерации, однако этот процесс наблюдается и при хроническом воспалении. Нарушение синтеза коллагена ведет к нарушению заживления ран и повышенной ломкости капилляров.

Основное вещество состоит из тканевой жидкости, плазма­тических белков, различных гликозаминогликанов (сульфатиро-ванных хондроитин-, дерматан-, гепаран- и кератансульфатов и несульфатированных — гиалуроновой кислоты) и фибронектина.

В соединительной ткани находятся клетки гематогенного про­исхождения, осуществляющие фагоцитоз (полиморфно-ядерные лейкоциты, гистиоциты, макрофаги), а также обеспечивающие иммунные реакции (плазмобласты, плазмоциты, лимфоциты, макрофаги).

К стромально-сосудистым диспротеинозам относят:

Мукоидное набухание, фибриноидное набухание и гиалиноз очень часто являются последовательными стадиями дезорганизации со­единительной ткани.

Амилоидоз отличается от этих процессов тем, что в состав образующихся белково-полисахаридных комплексов входит ано­мальный, не встречающийся в норме фибриллярный белок, ко­торый синтезируется специальными клетками — амилоидобла-стами.

Мукоидное набухание— увеличение количества и перераспре­деление мукополисахаридов, преимущественно гликозаминог­ликанов, в основном веществе соединительной ткани. Накопле­ние гликозаминогликанов всегда начинается с повреждения со­судов микроциркуляторного русла, что ведет к развитию ткане­вой гипоксии, активации гиалуронидазы и ослабеванию связи между гликозаминогликанами и белком.

Для выявления гликозаминогликанов используются специ­альные окраски.

Микроскопически коллагеновые волокна обычно сохраняют пучковое строение, но набухают и разволокняются.

Макроскопически органы практически не изменены.

Мукоидное набухание развивается чаще всего в стенках арте­рий, сердечных клапанах, эндо- и эпикарде, в капсулах суставов.

Причины: инфекционно-аллергические заболевания; ревма­тические болезни; атеросклероз; гипертоническая болезнь; ги­поксия.

Мукоидное набухание — процесс обратимый, может произойти полное восстановление структуры и функции. Если воздействие патогенного фактора продолжается, мукоидное набухание может перейти в фибриноидное набухание.

Функция органа в гистионе, где развивается мукоидное набу­хание, нарушается незначительно.

1ибриноидное набухание— глубокая и необратимая дезорга­низация соединительной ткани.

Фибриноид — это сложное вещество, образованное за счет белков и полисахаридов, распадающихся коллагеновых волокон и основного вещества, а также плазменных белков крови и нук-леопротеидов разрушенных клеток соединительной ткани. Обя­зательным компонентом фибриноида является фибрин.

Микроскопически пучки коллагеновых волокон становятся гомогенными, эозинофильными, резко ШИК-позитивными.

Макроскопически органы и ткани, в которых развивается фибриноидное набухание, мало изменены.

Фибриноидное набухание носит либо системный (распространен­ный), либо локальный (местный) характер.

Системное поражение отмечено при: инфекционно-аллергических заболеваниях; аллергических и аутоиммунных болез­нях; ангионевротических реакциях.

Локально фибриноид выявляется при хроническом воспале­нии. Например, в дне хронической язвы желудка, трофических язв кожи.

В исходе фибриноидного набухания иногда развивается фиб-риноидный некроз, характеризующийся полной деструкцией со­единительной ткани.

Фибриноидное набухание ведет к нарушению, а нередко и прекра­щению функции органа.

1ри гиалинозе в соединительной ткани образуются однород­ные полупрозрачные плотные массы (гиалин), напоминающие гиалиновый хрящ.

При иммуногистохимическом исследовании в гиалине обна­руживают не только белки плазмы, фибрин, но и компоненты иммунных комплексов (иммуноглобулины, фракции комплемен­та), а также иногда липиды. Гиалиновые массы устойчивы по отношению к кислотам, щелочам, ферментам, ШИК-положительны, хорошо воспринимают кислые красители (эозин, кис­лый фуксин), пикрофуксином окрашиваются в желтый или крас­ный цвет.

Гиалиноз может развиваться в исходе разных процессов:

• гиалиноз собственно соединительной ткани.

Каждый из двух видов гиалиноза может носить системный и местный характер.

Гиалиноз сосудов. Гиалинозу подвергаются преимущественно мелкие артерии и артериолы. Ему предшествуют повреждение эндотелия, базальной мембраны и гладкомышечных клеток стен­ки сосуда и пропитывание ее белками плазмы крови.

Причины системного гиалиноза сосудов:

• диабет, ревматические заболевания;

Ведущими механизмами в его развитии являются:

• деструкция волокнистых структур;

• повышение сосудисто-тканевой проницаемости (плазморрагия).

Микроскопически при гиалинозе артериолы превращаются в утолщенные стекловидные трубочки с резко суженным или полностью закрытым просветом.

Выделяют 3 вида сосудистого гиалина:

• простой, возникающий из малоизмененных компонентов плазмы крови;

• липогиалин, содержащий липиды и бета-липопротеиды;

• сложный гиалин, строящийся из иммунных комплексов, фибрина и разрушающихся структур сосудистой стенки.

Местный гиалиноз артерий как физиологическое явление на­блюдается в селезенке взрослых и пожилых людей, отражая функ­ционально-морфологические особенности селезенки как органа депонирования крови.

В большинстве случаев исход неблагоприятный, поскольку процесс необратим.

Распространенный гиалиноз артериол может вести к функ­циональной недостаточности органа (почечная недостаточность при артериолосклеротическом нефроциррозе). Ломкость сосудов ведет к развитию кровоизлияний.

Гиалиноз собственно соединительной ткани. Системный гиа­линоз соединительной ткани и сосудов развивается обычно в исходе фибриноидного набухания, ведущего к деструкции колла­гена и пропитыванию ткани белками плазмы и полисахаридами.

Местный гиалиноз как исход склероза развивается в рубцах, фиброзных спайках серозных полостей, сосудистой стенке при атеросклерозе и т. д. В основе гиалиноза в этих случаях лежат нарушения обмена соединительной ткани.

Микроскопическое исследование. Пучки коллагеновых волокон теряют фибриллярностъ и сливаются в однородную плотную хрящеподобную массу; клеточные элементы сдавливаются и подвер­гаются атрофии.

Макроскопическая картина. При выраженном гиалинозе во­локнистая соединительная ткань становится: плотной, хрящевидной, белесоватой, полупрозрачной.

Исход. В большинстве случаев неблагоприятный в связи с необратимостью процесса, но возможно и рассасывание гиали­новых масс. Иногда гиалинизированная ткань ослизняется.

Местный гиалиноз может быть причиной функциональной недостаточности органа.

1милоидоз— это стромально-сосудистый диспротеиноз, ко­торый сопровождается глубоким нарушением белкового обмена и появлением аномального фибриллярного белка с отложением его в межуточной ткани и стенках сосудов.

Амилоид в гистологических препаратах очень похож на гиа-лин и выглядит в световом микроскопе как бесструктурный, гомогенный, плотный, стекловидный, розового цвета белок.

Все типы амилоида имеют следующие физико-химические ха­рактеристики:

• при нанесении йодидов на свежую ткань, содержащую ами­лоид, она окрашивается в коричневый цвет;

• в гистологических препаратах амилоид может выглядеть следующим образом: при окраске гематоксилином и эозином имеет гомогенно розовый цвет; в поляризованном свете ами­лоид, окрашенный конго красным, обладает светло-зеленым двойным лучепреломлением; при окраске метилвиолетом, йод грюн, конго рот амилоид демонстрирует метахромазию, окра­шиваясь в кирпично-красный цвет;

• амилоид выявляется иммуногистохимически при помощи антител, специфичных для различных подтипов фибрилл;

Читайте также:  Адипозогенитальная дистрофия могут детей

• при электронной микроскопии амилоид выявляется в виде неветвящихся фибрилл толщиной 7,5—10 нм;

• при рентгендифракционном исследовании установлено, что амилоид представляет собой гофрированную бета-слоистую структуру.

Химическая структура белка амилоида: амилоид из иммуно­глобулинов, амилоид другого происхождения.

Клиническая классификацияамилоидоза основана на типе бел­ка и типе ткани, в которой он накапливается, распространенно­сти и возможной причине его возникновения.

первичный системный амилоидоз с преимущественным нако­плением амилоида в сердце, желудочно-кишечном тракте, языке, коже и нервах;

вторичный амилоидоз с преимущественным накоплением амилоида в печени, селезенке, почках, кишечнике, надпо­чечниках.

Ограниченный (местный) амилоидоз: ограниченный амилои­доз может иметь узловую, опухолеподобную форму. Он встречается редко и наблюдается в языке, мочевом пузыре, легких и коже.

Амилоид в новообразованиях: амилоид накапливается в стро-ме большого количества эндокринных новообразований.

Семейный врожденный амилоидоз:

• сердечный. Сенильный амилоидоз:

• небольшие количества амилоида часто обнаруживаются в сердце;

‘ • селезенке у пожилых людей.

Амилоид продуцируется специальными клетками, называе­мыми амилоидобластами. При различных формах амилоидоза роль амилоидобластов выполняют разные клетки.

Амилоид накапливается: в интиме или адвентиции мелких кровеносных сосудов; в интерстициальной ткани по ходу ретику­лярных и коллагеновых волокон; в базальной мембране эпители­альных структур.

Внешний вид органов при амилоидозе зависит от степени развития процесса. Если отложения амилоида небольшие, внеш­ний вид органа изменяется мало и амилоидоз диагностируется лишь при микроскопическом исследовании. При выраженном амилоидозе органы увеличиваются в объеме, бледные, с сальным блеском.

Признаками наиболее выраженного поражения ткани явля­ются бледно-серый оттенок и своеобразный восковидный, или сальный, вид ее на разрезе.

В селезенке амилоид может откладываться как изолированно в лимфатических фолликулах, так и равномерно по всей пульпе. В первом случае фолликулы селезенки на разрезе имеют вид полупрозрачных зерен, напоминающих зерна саго. Во втором случае селезенка увеличена, плотная, коричнево-красная, глад­кая, имеет сальный блеск на разрезе (сальная селезенка). Саговая и сальная селезенка представляют последовательные стадии про­цесса.

В почках амилоид откладывается в стенках приносящих и выно­сящих артериол, в капиллярных петлях и мезангии клубочков,

в базальных мембранах канальцев и в строме. Почки становятся плотными, большими и «сальными». По мере нарастания процесса клубочки полностью замещаются амилоидом, разрастается соеди­нительная ткань и развивается амилоидное сморщивание почек.

В печени отложение амилоида наблюдается между звездчаты­ми ретикулоэндотелиоцитами синусоидов, по ходу ретикулярной стромы долек, в стенках сосудов, протоков и в соединительной ткани портальных трактов. По мере накопления амилоида печеночные клетки атрофируются и погибают.

В кишечнике амилоид выпадает в строме ворсин слизистой оболочки, а также в стенках сосудов как слизистой оболочки, так и подслизистого слоя.

Амилоидоз надпочечников, как правило, двусторонний, отло­жение амилоида встречается в корковом веществе по ходу сосу­дов и капилляров.

В сердце амилоид обнаруживается под эндокардом, в волок­нах и сосудах стромы, а также в эпикарде по ходу вен.

В скелетных мышцах, как и в миокарде, амилоид выпадает по ходу межмышечной соединительной ткани, в стенках сосудов и в нервах. Периваскулярно и периневрально нередко образуют­ся массивные отложения амилоидного вещества.

В легких отложения амилоида появляются сначала в стенках разветвлений легочных артерий и вены, а также в перибронхи-альной соединительной ткани. Позже амилоид появляется в ме­жальвеолярных перегородках.

В головном мозге при старческом амилоидозе амилоид нахо­дят в сенильных бляшках коры, сосудах и оболочках.

Амилоидоз кожи характеризуется диффузным отложением ами­лоида в сосочках кожи и ее ретикулярном слое, в стенках сосудов и базальных мембранах сальных и потовых желез, что сопровож­дается деструкцией эластических волокон, резкой атрофией эпи­дермиса и придатков кожи.

Амилоидоз поджелудочной железы имеет некоторое своеобра­зие. Помимо поражения артерий железы, встречается и амилои­доз островков, что наблюдается в глубокой старости.

Исход. Неблагоприятный, практически необратимый.

Выраженный амилоидоз ведет к дистрофии и атрофии парен­химы и склерозу стромы органов, к их функциональной недоста­точности.

источник

Жизнедеятельность любой ткани осуществляется в результате постоянного обмена веществ, в некоторых случаях нарушения метаболизма вызывают качественные изменения в тканях или органе; при этом в клетке и межуточном веществе увеличивается содержание естественных метаболитов или появляются вещества иного химического или физического состава. Такие изменения носят название дистрофии. Дистрофия относится к наиболее древним процессам филогенеза и сопровождает многие патологические процессы и заболевания детей и взрослых. Таким образом, дистрофический процесс универсален и является общепатологической категорией. Он может развертываться на различных уровнях организации живого: органе, ткани, клетки и клеточных ультраструктур. Многообразие причин (алиментарные, инфекционные и токсические, нейроэндокринные расстройства, пороки развития различных систем) нарушает регуляторную деятельность центральной нервной и иммунной системы, что изменяет нормальный метаболизм белков, жиров, углеводов и витаминов.

На занятии предлагается изучить структурно-патогенетические изменения в органах и тканях при диспротеинозах, липидозах и углеводных дистрофиях; разобрать морфогенетические аспекты развития того или иного вида паренхиматозных дистрофий; обратить внимание на редкие случаи врожденных болезней накопления.

Дистрофия (dys-нарушение, trophe-питаю) — морфологическое выражение нарушения тканевого и клеточного метаболизма.

Декомпозиция (фанероз) — распад жиро-белковых комплексов мембранных структур паренхиматозной клетки или белково-полисахаридных комплексов соединительной ткани.

Денатурация — нарушение нативной структуры белка под воздействием каких-либо факторов.

Коагуляция (coagulata — свертывание,сгущение) — переход коллоидного раствора в состояние золя или геля.

Колликвация (сollikuatio — расплавлять) — размягчение, расплавление тканей.

Гликогеноз — наследственная углеводная дистрофия, в основе которой лежат нарушения обмена гликогена.

Ихтиоз (ichtyosis — рыбья чешую) — повышенное ороговение значительных участков кожи.

Лейкоплакия — очаги ороговения слизистых оболочек.

Тезаурисмозы (tesauros — запас) — болезни, связанные с накоплением метаболитов в клетках и тканях.

Под термином повреждение или альтерация (от лат. alteratio — изменение) в патологической анатомии принято понимать изменения структуры клеток, межклеточного вещества, тканей и органов, которые сопровождаются снижением уровня их жизнедеятельности или ее прекращением. В группу повреждений включены такие общепатологические процессы как дистрофии и некроз, а также атрофия. Последняя, представляя собой один из вариантов адаптации организма к изменившимся условиям жизнедеятельности под влиянием неблагоприятных факторов, отнесена в эту группу на основании того, что, по сути, является гипобиотическим процессом.

Причины, способные вызвать повреждение, могут действовать непосредственно или опосредованно (через гуморальные и рефлекторные влияния). Они очень разнообразны. Характер и степень повреждения зависят от природы и силы повреждающего фактора, структурно-функциональных особенностей органа или ткани, а также от реактивности организма. В одних случаях возникают поверхностные и обратимые изменения, касающиеся обычно лишь ультраструктур, в других — глубокие и необратимые, которые могут завершиться гибелью не только клеток и тканей, но иногда и целых органов.

Большое количество экзогенных повреждающих факторов, включая инфекционные и токсические (алкоголь, наркотики, тяжелые металлы) агенты, вмешиваясь непосредственно в различные биохимические процессы клетки и межклеточных структур, вызывают в них как морфологические, так и функциональные изменения (стереотипные ответные реакции).

Точный момент, при достижении которого повреждение (дистрофия) становится необратимым, приводящим к смерти клетки (некрозу), является неизвестным.

Некроз — это местная смерть, то есть гибель клеток и тканей при жизни организма. Он сопровождается необратимыми биохимическими и структурными изменениями. Некротизированные клетки прекращают функционировать. Если некроз достаточно обширный, то он клинически проявляется в виде болезни (инфаркт миокарда, ишемический инсульт).

К несмертельным повреждениям клетки можно отнести дистрофии .

Под трофикой понимают совокупность механизмов, определяющих метаболизм и структурную организацию ткани (клетки), которые необходимы для выполнения специализированной функции.

Дистрофия (от греч. dys — нарушение и trophо — питаю) — это количественные и качественные структурные изменения в клетках и/или межклеточном веществе органов и тканей, обусловленные нарушением обменных процессов.

При дистрофиях в результате нарушения трофики в клетках или в межклеточном веществе накапливаются различные продукты обмена (белки, жиры, углеводы, минералы, вода). Морфологическая сущность дистрофий выражается в:

1) увеличении или уменьшении количества каких-либо веществ, содержащихся в организме в норме (например, увеличение количества жира в жировых депо);

2) изменение качества, то есть физико-химических свойств веществ, присущих организму в норме (например, изменение тинкториальных свойств коллагеновых волокон при мукоидном набухании и фибриноидных изменениях);

3) появление обычных веществ в необычном месте (например, накопление жировых вакуолей в цитоплазме клеток паренхиматозных органов при жировой дистрофии);

4) появление и накопление новых веществ, которые не присущи для него в норме (например, белка амилоида). Таким образом, дистрофия является морфологическим выражением нарушений метаболизма клеток и тканей .

Среди механизмов поддержания нормальной трофики выделяют клеточные и внеклеточные.

Клеточные механизмы обеспечиваются структурной организацией клетки и ее ауторегуляцией, обеспечивающейся генетическим кодом. Внеклеточные механизмы трофики обеспечиваются транспортными (кровь, лимфа) и интегративными (нервная, эндокринная, гуморальная) системами ее регуляции.

Непосредственной причиной развития дистрофий могут служить :

1. Различные факторы, повреждающие ауторегуляцию клетки, среди них:

А. Токсические вещества (в том числе токсины микроорганизмов).

В. Физические и химические агенты: высокая и низкая температуры, определенные химические вещества (кислоты, щелочи, соли тяжелых металлов, многие органические вещества), ионизирующая радиация.

С. Приобретенная или наследственная ферментопатия (энзимопатия).

D. Вирусы. Цитопатогенные вирусы могут вызывать лизис клетки путем непосредственного прямого включения в клеточные мембраны. Другие вирусы могут встраиваться в клеточный геном и вызывать соответствующее нарушение белкового синтеза в клетке. Некоторые вирусы могут вызывать лизис клеточных мембран опосредованно путем иммунного ответа, вызванного вирусными антигенными детерминантами на поверхности инфицированной клетки.

2. Нарушения функции энергетических и транспортных систем, обеспечивающих метаболизм и структурную сохранность тканей (клеток), при которых имеет место:

A. Гипогликемия: Макроэргические связи АТФ представляют собой наиболее эффективный источник энергии для клетки. АТФ производится путем окислительного фосфорилирования АДФ; эта реакция связана с окислением восстановленных веществ в дыхательной цепи ферментов. Глюкоза — основной субстрат для производства энергии в большинстве тканей и единственный источник энергии в мозговых клетках. Низкий уровень глюкозы в крови (гипогликемия) приводит к недостаточному производству молекул аденозинтрифосфата (АТФ), что наиболее выражено в головном мозге.

B. Гипоксия: Недостаток кислорода в клетках (гипоксия) может возникать при: (1) обструкции дыхательных путей или болезни, предотвращающей оксигенацию крови в легких; (2) ишемии, или нарушении тока крови в тканях в результате общих или местных нарушений циркуляции крови; (3) анемии (то есть, при снижении уровня гемоглобина в крови), что приводит к снижению транспорта кислорода кровью; (4) нарушении структуры гемоглобина (например, при отравлении угарным газом (СО)), при этом образуется метгемоглобин, не способный к переносу кислорода; это приводит к такому же результату, что и при анемии.

3. Нарушения эндокринной и нервной регуляции:

А. Заболевания эндокринных органов (тиреотоксикоз, диабет, гиперпаратиреоз и т.д.)

В. Болезни центральной и периферической нервной систем (нарушенная иннервация, опухоли головного мозга).

Морфогенез дистрофий. Среди механизмов, ведущих к развитию характерных для дистрофий изменений, различают инфильтрацию, декомпозицию (фанероз), извращенный синтез и трансформацию.

Инфильтрация — избыточное проникновение продуктов обмена из крови и лимфы в клетки или межклеточное вещество и/или нарушение включения их в метаболизм с последующим накоплением. Например, инфильтрация белком эпителия проксимальных канальцев почек при нефротическом синдроме, инфильтрация липопротеидами интимы аорты и крупных артерий при атеросклерозе.

Декомпозиция (фанероз) — распад сложных в химическом отношении веществ. Например, распад липопротеидных комплексов и накопление в клетке жира в свободном состоянии (жировая дистрофия кардиомиоцитов при дифтерийной интоксикации). Распад полисахаридно-белковых комплексов лежит в основе фибриноидных изменений соединительной ткани при ревматических болезнях.

Трансформация — переход одного вещества в другое. Такова, например, трансформация углеводов в жиры при сахарном диабете, усиленная полимеризация глюкозы в гликоген и др.

Извращенный синтез — это синтез в клетках или в тканях веществ, не встречающихся в них в норме. К ним относятся: синтез аномального белка амилоида в клетке и образование аномальных белково-полисахаридных комплексов амилоида в межклеточном веществе, синтез белка алкогольного гиалина гепатоцитом, синтез гликогена в эпителии узкого сегмента нефрона при сахарном диабете.

Характерная морфология дистрофий выявляется, как правило, на тканевом и клеточном уровнях, причем для доказательства связи дистрофии с нарушениями того или иного вида обмена требуется применение гистохимических методов. Без установления качества продукта нарушенного обмена нельзя верифицировать тканевую дистрофию, т.е. отнести ее к белковым, жировым, углеводным или другим дистрофиям. Изменения органа при дистрофии (размер, цвет, консистенция, структура на разрезе) в одних случаях представлены исключительно ярко, в других — отсутствуют и лишь микроскопическое исследование позволяет выявить их специфичность.

В классификации дистрофий придерживаются нескольких принципов. Выделяют дистрофии:

I. В зависимости от локализации нарушений обмена:

II. По преобладанию нарушений того или иного вида обмена:

III. В зависимости от влияния генетических факторов:

IV. По распространенности процесса:

Паренхиматозные дистрофии — это структурные изменения в высокоспециализированных в функциональном отношении клетках, связанные с нарушением обмена веществ. Поэтому при паренхиматозных дистрофиях преобладают нарушения клеточных механизмов трофики. Различные виды паренхиматозных дистрофий отражают недостаточность определенного физиологического (ферментативного) механизма, обеспечивающего выполнение клеткой специализированной функции (гепатоцит, нефроцит, кардиомиоцит и т.д.). В связи с этим в разных органах (печень, почки, сердце и т.д.) при развитии одного и того же вида дистрофии участвуют различные пато- и морфогенетические механизмы.

Механизм повреждений клетки сводится к следующему:

A. Вначале происходят внутриклеточное накопление воды и электролиз, обусловленные нарушением функции энергозависимой К + -Na + -АТФазы в клеточной мембране. В результате приток К + , Na + и воды в клетку ведет к “облачному” или “мутному” набуханию, что является ранним и обратимым (реверсивным) результатом повреждения клетки (этот эффект обусловлен набуханием цитоплазматических органелл, рассеянных в клетке). Происходят также изменения во внутриклеточных концентрациях других электролитов (особенно K + , Ca 2+ и Mg 2+ ), поскольку их концентрации также поддерживаются активностью энергозависимых процессов в клеточной мембране. Эти нарушения концентрации электролитов могут вести к беспорядочной электрической активности (например, в миокардиоцитах и нейронах) и ингибированию ферментов.

B. За притоком ионов натрия и воды следует набухание цитоплазматических органелл. При набухании эндоплазматического ретикулума происходит отделение рибосом, что приводит к нарушению синтеза белка. Митохондриальное набухание, которое является общим признаком для большого количества различных типов повреждений, вызывает физическое разобщение окислительного фосфорилирования.
С. В условиях гипоксии клеточный метаболизм изменяется от аэробного к анаэробному гликолизу. Преобразование ведет к производству молочной кислоты и вызывает уменьшение внутриклеточной pH. Хроматин конденсируется в ядре, происходит дальнейшее разрушение мембран органелл. Разрушение лизосомальных мембран ведет к выходу лизосомальных ферментов в цитоплазму, которые повреждают жизненно важные внутриклеточные молекулы.

В зависимости от нарушений того или иного вида обмена паренхиматозные дистрофии делят на белковые (диспротеинозы), жировые (липидозы) и углеводные.

ПАРЕНХИМАТОЗНЫЕ БЕЛКОВЫЕ ДИСТРОФИИ (ДИСПРОТЕИНОЗЫ)

Большая часть белков цитоплазмы (простых и сложных) находится в соединении с липидами, образуя липопротеидные комплексы. Эти комплексы составляют основу мембран митохондрий, эндоплазматической сети, пластинчатого комплекса и других структур. Помимо связанных белков в цитоплазме клетки содержатся и свободные белки.

Сущность паренхиматозных диспротеинозов состоит в изменении физико-химических и морфологических свойств белков клетки: они подвергаются либо коагуляции, то есть свертыванию с увеличением количества химических связей (например, S—S мостиков между полипептидными цепями), либо, наоборот, колликвации (разжижению) (от слова liquor — жидкость), то есть распаду полипептидных цепей на фрагменты, что ведет к гидратации цитоплазмы. После повреждения любой этиологии в клетке сразу увеличивается синтез белков целого семейства — это, так называемые белки температурного (теплового) шока. Среди белков температурного шока наиболее изучен убиквитин, который, как предполагается, защищает другие белки клетки от денатурации. Убиквитин играет роль «домашней хозяйки» по наведению порядка в клетке. Соединяясь с поврежденными белками он способствует их утилизации и восстановлению структурных компонентов внутриклеточных органелл. При тяжелом повреждении и избыточном накоплении комплексы убиквитин—белок могут формировать цитоплазматические включения (например, тельца Маллори в гепатоцитах — убиквитин/кератин; тельца Луи в нейронах при болезни Паркинсона — убиквитин/нейрофиламенты).

К паренхиматозным белковым дистрофиям со времен Р.Вирхова многие патологи причисляли и продолжают причислять так называемую зернистую дистрофию , которую сам Р.Вирхов обозначил как “мутное набухание”. Так принято обозначать процесс, при котором в цитоплазме клеток паренхиматозных органов появляется выраженная зернистость. При этом клетки имеют вид мутных, набухших. Сами органы увеличиваются в размерах, становятся дряблыми и тусклыми на разрезе, как бы ошпаренные кипятком.

Предполагалось, что зернистость, наблюдаемая в клетках, обусловлена накоплением в клетке зерен белка. Однако электронномикроскопическое и гистоферментохимическое изучение «зернистой дистрофии» показало, что в ее основе лежит не накопление белка в цитоплазме, а либо гиперплазия (т.е. увеличение количества) ультраструктур клеток паренхиматозных органов как выражение функционального напряжения этих органов в ответ на различные воздействия; гиперплазированные ультраструктуры клетки выявляются при светооптическом исследовании как белковые гранулы, либо увеличение размеров ультраструктур за счет их набухания при повышенной проницаемости мембран.

В одних паренхиматозных клетках (кардиомиоциты, гепатоциты) происходит гиперплазия и набухание митохондрий и эндоплазматического ретикулума, в других, например, в эпителии извитых канальцев, гиперплазия лизосом, поглощающих низкомолекулярные (в проксимальном отделе) и высокомолекулярные (в дистальном отделе) белки. Клиническое значение мутного набухания во всех его разновидностях различно. Но даже выраженные его морфологические проявления, что доказано при помощи биопсий паренхиматозных органов, обычно не влекут за собой недостаточности органа, а сопровождаются некоторым снижением функции органа. Это проявляется приглушенностью тонов сердца, появлением следов белка в моче, снижением силы сокращения мышц. В принципе это процесс обратимый. Вместе с тем необходимо помнить, что если причина, вызвавшая развитие зернистой дистрофии, не устранена, наступает деструкция липопротеидных комплексов мембранных структур клетки и развиваются более тяжелые паренхиматозные белковые и жировые дистрофии.

В настоящее время к паренхиматозным белковым дистрофиям (диспротеинозам) относят гиалиново-капельную, гидропическую и роговую. Однако следует подчеркнуть, что роговая дистрофия по механизму своего развития не связана с предыдущими.

При гиалиново-капельной дистрофии в цитоплазме появляются крупные гиалиноподобные белковые глыбки и капли, сливающиеся между собой и заполняющие тело клетки. В основе этой дистрофии лежит коагуляция белков цитоплазмы с выраженной деструкцией ультраструктурных элементов клетки — фокальный коагуляционный некроз.

Этот вид диспротеиноза часто встречается в почках, реже — в печени, и совсем редко — в миокарде. Внешний вид органов при этой дистрофии не имеет каких- либо характерных черт. Макроскопические изменения характерны для тех заболеваний, при которых встречается гиалиново-капельная дистрофия.

В почках при микроскопическом исследовании накопление крупных зерен белка ярко-розового цвета — гиалиновых капель — находят в нефроцитах. При этом наблюдается деструкция митохондрий, эндоплазматической сети, щеточной каемки.

В основе гиалиново-капельной дистрофии нефроцитов лежит недостаточность вакуолярно-лизосомального аппарата эпителия проксимальных и дистальных извитых канальцев , в норме реабсорбирующего белки.

Поэтому этот вид дистрофии нефроцитов очень часто встречается при нефротическом синдроме и отражает реабсорбционную недостаточность извитых канальцев в отношении белков. Этот синдром является одним из проявлений многих заболевании почек, при которых первично поражается гломерулярный фильтр (гломерулонефрит, амилоидоз почек, парапротеинемиическая нефропатия и др.).

В печени при микроскопическом исследовании в гепатоцитах находят глыбки и капли белковой природы — это алкогольный гиалин, представляющий собой на ультраструктурном уровне нерегулярные агрегаты микрофибрилл и гиалиновые неправильной формы включения (тельца Маллори). Образование этого белка и телец Маллори служит проявлением извращенной белково-синтетической функции гепатоцита и выявляется постоянно при алкогольном гепатите.

Читайте также:  Алиментарная дистрофия блокадный ленинград

Исход гиалиново-капельной дистрофии неблагоприятен: она завершается необратимым процессом, ведущим к тотальному коагуляционному некрозу клетки.

Функциональное значение этой дистрофии очень велико — происходит резкое снижение функции органа. С гиалиново-капельной дистрофией эпителия почечных канальцев связаны появление в моче белка (протеинурия) и цилиндров (цилиндрурия), потеря белков плазмы (гипопротеинемия), нарушение ее электролитного баланса. Гиалиново-капельная дистрофия гепатоцитов нередко является морфологической основой нарушений многих функций печени.

ГИДРОПИЧЕСКАЯ (ВОДЯНОЧНАЯ) ИЛИ ВАКУОЛЬНАЯ ДИСТРОФИЯ

Гидропическая, или вакуольная, дистрофия характеризуется появлением в клетке вакуолей, наполненных цитоплазматической жидкостью. Жидкость накапливается в цистернах эндоплазматического ретикулума и в митохондриях, реже в ядре клетки.

Механизм развития гидропической дистрофии сложен и отражает нарушения водно-электролитного и белкового обмена, ведущие к изменению коллоидно-осмотического давления в клетке. Большую роль играет нарушение проницаемости мембран клетки, сопровождающееся их распадом. Это ведет к активации гидролитических ферментов лизосом, которые разрывают внутримолекулярные связи с присоединением воды. По существу такие изменения клетки являются выражением фокального колликвационного некроза.

Гидропическая дистрофия наблюдается в эпителии кожи и почечных канальцев, в гепатоцитах, мышечных и нервных клетках, а также в клетках коры надпочечников. Причины развития гидропической дистрофии в разных органах неоднозначны. В почках — это повреждение гломерулярного фильтра (гломерулонефрит, амилоидоз, сахарный диабет), что ведет к гиперфильтрации и недостаточности ферментной системы нефроцитов, в норме обеспечивающей реабсорбцию воды; отравление гликолями, гипокалиемия. В печени гидропическая дистрофия возникает при вирусном и токсическом гепатитах. Причинами гидропической дистрофия эпидермиса могут быть инфекции, аллергии.

Внешний вид органов и тканей мало изменяется при гидропической дистрофии. Микроскопическая картина: паренхиматозные клетки увеличены в объеме, цитоплазма их заполнена вакуолями, содержащими прозрачную жидкость. Ядро смещается на периферию, иногда вакуолизируется или сморщивается. Нарастание гидропии приводит к распаду ультраструктур клетки и переполнению клетки водой, появлению заполненных жидкостью баллонов, поэтому такие изменения называют баллонной дистрофией.

Исход гидропической дистрофии, как правило, неблагоприятный; она завершается тотальным колликвационным некрозом клетки. Поэтому функция органов и тканей при гидропической дистрофии резко снижена.

Роговая дистрофия, или патологическое ороговение, характеризуется избыточным образованием рогового вещества в ороговевающем эпителии (гиперкератоз, ихтиоз) или образованием рогового вещества там, где в норме его не бывает (патологическое ороговение на слизистых оболочках, например, в полости рта (лейкоплакия), пищеводе, шейке матки.

Роговая дистрофия может быть местной или общей, врожденной или приобретенной. Причины роговой дистрофии разнообразны: хроническое воспаление, связанное с инфекционными агентами, действием физических и химических факторов, авитаминозы, врожденное нарушение развития кожи и др.

Исход может быть двояким: устранение вызывающей причины в начале процесса может привести к восстановлению ткани, однако в далеко зашедших случаях наступает гибель клеток.

Значение роговой дистрофии определяется ее степенью, распространенностью и длительностью. Длительно существующее патологическое ороговение слизистой оболочки (лейкоплакия) может явиться источником развития раковой опухоли. Врожденный ихтиоз резкой степени, как правило, несовместим с жизнью.

ПАРЕНХИМАТОЗНЫЕ ЖИРОВЫЕ ДИСТРОФИИ (ЛИПИДОЗЫ)

В цитоплазме клеток содержатся в основном липиды, которые образуют с белками сложные лабильные жиробелковые комплексы — липопротеиды. Эти комплексы составляют основу мембран клетки. Липиды вместе с белками являются составной частью и клеточных ультраструктур. Помимо липопротеидов, в цитоплазме встречаются в небольшом количестве жиры в свободном состоянии.

Паренхиматозная жировая дистрофия — это структурные проявления нарушения обмена цитоплазматических липидов, которые могут выражаться в накоплении жира в свободном состоянии в клетках, где он обнаруживаются и в норме.

Причины жировой дистрофии разнообразны:

— кислородное голодание (тканевая гипоксия), поэтому жировая дистрофия так часто встречается при заболеваниях сердечно-сосудистой системы, хронических заболеваниях легких, анемиях, хроническом алкоголизме и т. д. В условиях гипоксии страдают в первую очередь отделы органа, находящиеся в функциональном напряжении;

— тяжелые или длительно протекающие инфекции (дифтерия, туберкулез, сепсис);

— интоксикации (фосфор, мышьяк, хлороформ, алкоголь), ведущие к нарушениям обмена;

— авитаминозы и одностороннее (с недостаточным содержанием белков) питание, сопровождающееся дефицитом ферментов и липотропных факторов, которые необходимы для нормального жирового обмена клетки.

Паренхиматозная жировая дистрофия характеризуется, главным образом, накоплением триглицеридов в цитоплазме паренхиматозных клеток. При нарушении связи белков с липидами — декомпозиции, которая возникает под действием инфекций, интоксикаций, продуктов перекисного окисления липидов — возникает деструкция мембранных структур клетки и в цитоплазме появляются свободые липоиды, являющиеся морфологическим субстратом паренхиматозной жировой дистрофии. Наиболее часто она наблюдается в печени, реже в почке и миокарде, и расценивается как неспецифический ответ на большое количество типов повреждения.

Нормальный метаболизм триглицеридов в печени играет центральную роль в метаболизме жиров. Свободные жирные кислоты током крови приносятся в печень, где они преобразовываются в триглицериды, фосфолипиды и сложные эфиры холестерина. После того, как эти липиды формируют комплексы с белками, которые также синтезируются в клетках печени, они секретируются в плазму как липопротеины. При нормальном метаболизме количество триглицеридов в клетке печени невелико и не может быть замечено при обычных микроскопических исследованиях.

Микроскопические признаки жировой дистрофии: любой жир, находящийся в тканях, растворяется в растворителях, которые используются при окраске образцов ткани для микроскопического исследования. Поэтому при обычной проводке и окраске ткани (окраска гематоксилином и эозином) клетки в самых ранних стадиях жировой дистрофии имеют бледную и пенистую цитоплазму. По мере увеличения жировых включений в цитоплазме появляются небольшие вакуоли.

Специфическая окраска на жиры требует использования замороженных срезов, сделанных из свежей ткани. В замороженных срезах жир остается в цитоплазме, после чего срезы окрашиваются специальными красителями. Гистохимически жиры выявляются с помощью ряда методов: судан IV, жировой красный О и шарлах рот окрашивают их в красный цвет, судан Ш — в оранжевый, судан черный B и осмиевая кислота — в черный, сульфат нильского голубого окрашивает жирные кислоты в темно-синий цвет, а нейтральные жиры — в красный. С помощью поляризационного микроскопа можно дифференцировать изотропные и анизотропные липиды. Анизотропные липиды, такие как холестерин и его эфиры, дают характерное двойное лучепреломление.

Жировая дистрофия печени проявляется резким увеличением содержания и изменением состава жиров в гепатоцитах. В клетках печени вначале появляются гранулы липидов (пылевидное ожирение), затем мелкие капли их (мелкокапельное ожирение), которые в дальнейшем сливаются в крупные капли (крупнокапельное ожирение) или в одну жировую вакуоль, которая заполняет всю цитоплазму и отодвигает ядро на периферию. Измененные таким образом печеночные клетки напоминают жировые. Чаще отложение жиров в печени начинается на периферии, реже — в центре долек; при значительно выраженной дистрофии ожирение клеток печени имеет диффузный характер.

Макроскопически печень при жировой дистрофии увеличена, малокровна, тестоватой консистенции, имеет желтый или охряно-желтый цвет, с жирным блеском на разрезе. При разрезе на лезвии ножа и поверхности разреза виден налет жира.

Причины жировой дистрофии печени: накопление триглицеридов в цитоплазме клеток печени возникает в результате нарушения метаболизма при следующих условиях:

1) когда увеличивается мобилизация жиров в жировой ткани, что приводит к увеличению количества жирных кислот, достигающих печени, например, при голодании и сахарном диабете;

2) когда скорость преобразования жирных кислот в триглицериды в клетке печени увеличена из-за повышенной активности соответствующих ферментных систем. Это — главный механизм влияния алкоголя, который является мощным стимулятором ферментов.

3) когда уменьшено окисление триглицеридов до ацетил-КоА и кетоновых тел в органах, например, при гипоксии, и приносимый током крови и лимфы жир не окисляется — жировая инфильтрация;

4) когда синтез белков-акцепторов жиров недостаточен. Таким путем возникает жировая дистрофия печени при белковом голодании и при отравлении некоторыми гепатотоксинами, например, четыреххлористым углеродом и фосфором.

Типы жировой дистрофии печени :

a. Острая жировая дистрофия печени — редкое, но серьезное состояние, связанное с острым поражением печени. При острой жировой дистрофии печени триглицериды накапливаются в цитоплазме как маленькие, ограниченные мембраной вакуоли (мелкокапельная жировая дистрофия печени).

b. Хроническая жировая дистрофия печени может возникать при хроническом алкоголизме, недоедании и при отравлении некоторыми гепатотоксинами. Жировые капли в цитоплазме соединяются, формируя значительно большие вакуоли (крупнокапельная жировая дистрофия печени). Локализация жировых изменений в дольке печени различается в зависимости от различных причин. Даже при тяжелой хронической жировой печени редко имеются клинические проявления дисфункции печени.

Жировая дистрофия миокарда характеризуется накоплением триглицеридов в миокарде.

Причины жировой дистрофии миокарда:

— хронические гипоксические состояния, особенно при выраженной анемии. При хронической жировой дистрофии желтые полосы чередуются с красно-коричневыми участками («тигровое сердце»). Клинические признаки обычно не сильно выражены.

— токсическое поражение, например, дифтеритический миокардит, вызывает острую жировую дистрофию. Макроскопически сердце дряблое, имеется диффузное желтое окрашивание, сердце выглядит увеличенным в объеме, камеры его растянуты; в клинической картине появляются признаки острой сердечной недостаточности.

Жировая дистрофия миокарда рассматривается как морфологический эквивалент его декомпенсации. Большинство митохондрий при этом распадается, поперечная исчерченность волокон исчезает. Развитие жировой дистрофии миокарда чаще всего связывают не с разрушением комплексов клеточных мембран, а с деструкцией митохондрий, что ведет к нарушению окисления жирных кислот в клетке. В миокарде жировая дистрофия характеризуется появлением в мышечных клетках мельчайших жировых капель (пылевидное ожирение). При нарастании изменений эти капли (мелкокапельное ожирение) полностью замещают цитоплазму. Процесс имеет очаговый характер и наблюдается в группах мышечных клеток, расположенных по ходу венозного колена капилляров и мелких вен, чаще субэндо- и субэпикардиально.

В почках при жировой дистрофии жиры появляются в эпителии проксимальных и дистальных канальцев. Обычно это нейтральные жиры, фосфолипиды или холестерин, который обнаруживают не только в эпителии канальцев, но и в строме. Нейтральные жиры в эпителии узкого сегмента и собирательных трубок встречаются как физиологическое явление. Внешний вид почек: они увеличены, дряблые (при сочетании с амилоидозом плотные), корковое вещество набухшее, серое с желтым крапом, заметным на поверхности и разрезе.

Механизм развития жировой дистрофии почек связан с инфильтрацией эпителия почечных канальцев жиром при липемии и гиперхолестеринемии (нефротический синдром), что ведет к гибели нефроцитов.

Исход жировой дистрофии зависит от ее степени. Если она не сопровождается грубым поломом клеточных структур, то, как правило, оказывается обратимой. Глубокое нарушение обмена клеточных липидов в большинстве случаев заканчивается гибелью клетки. Функциональное значение жировой дистрофии велико: функционирование органов при этом резко нарушается, а в ряде случаев и прекращается. Некоторые авторы высказывали мысль о появлении жира в клетках в период реконвалесценции и начала репарации. Это согласуется с биохимическими представлениями о роли пентозофосфатного пути утилизации глюкозы в анаболических процессах, что сопровождается также синтезом жиров.

ПАРЕНХИМАТОЗНЫЕ УГЛЕВОДНЫЕ ДИСТРОФИИ

Углеводы, которые определяются в клетках и тканях и могут быть идентифицированы гистохимически, делят на полисахариды, из которых в животных тканях выявляются лишь гликоген, гликозаминогликаны (мукополисахариды) и гликопротеиды. Среди гликозаминогликанов различают нейтральные, прочно связанные с белками, и кислые, к которым относятся гиалуроновая, хондроитинсерная кислоты и гепарин. Кислые гликозаминогликаны как биополимеры способны вступать в непрочные соединения с рядом метаболитов и осуществлять их транспорт. Главными представителями гликопротеидов являются муцины и мукоиды. Муцины составляют основу слизи, продуцируемой эпителием слизистых оболочек и железами, мукоиды входят в состав многих тканей.

Гистохимические методы выявления углеводов.

Полисахариды, гликозаминогликаны и гликопротеиды выявляются ШИК-реакцией. Сущность реакции заключается в том, что после окисления йодной кислотой (или реакции с перйодатом) образующиеся альдегиды дают с фуксином Шиффа красное окрашивание. Для выявления гликогена ШИК-реакцию дополняют ферментативным контролем — обработкой срезов амилазой. Гликоген окрашивается кармином Беста в красный цвет. Гликозаминогликаны и гликопротеиды определяют с помощью ряда методов, из которых наиболее часто применяют окраски толуидиновым синим или метиленовым синим. Эти окраски позволяют выявлять хромотропные вещества, дающие реакцию метахромазии.

Обработка срезов ткани гиалуронидазами (бактериальной, тестикулярной) с последующей окраской теми же красителями позволяет дифференцировать различные гликозаминогликаны; это возможно также при изменении рН красителя.

Паренхиматозная углеводная дистрофия может быть связана с нарушением обмена гликогена или гликопротеидов.

Нарушение обмена гликогена

Основные запасы гликогена находятся в печени и скелетных мышцах. Гликоген печени и мышц расходуется в зависимости от потребностей организма (лабильный гликоген). Гликоген нервных клеток, проводящей системы сердца, аорты, эндотелия, эпителиальных покровов, слизистой оболочки матки, соединительной ткани, эмбриональных тканей, хряща является необходимым компонентом клеток и его содержание не подвергается заметным колебаниям (стабильный гликоген). Однако деление гликогена на лабильный и стабильный условно. Регуляция обмена углеводов осуществляется нейроэндокринным путем. Основная роль принадлежит гипоталамической области, гипофизу (АКТГ, тиреотропный, соматотропный гормоны), бета-клеткам островков поджелудочной железы (инсулин), надпочечникам (глюкокортикоиды, адреналин) и щитовидной железе.

Нарушения содержания гликогена проявляются в уменьшении или увеличении количества его в тканях и появлении там, где он обычно не выявляется. Эти нарушения наиболее ярко выражены при сахарном диабете и при наследственных углеводных дистрофиях — гликогенозах.

При сахарном диабете, развитие которого связывают с патологией бета-клеток островков поджелудочной железы, что обусловливает недостаточную выработку инсулина, происходит недостаточное использование глюкозы тканями, увеличение ее содержания в крови (гипергликемия) и выведение с мочой (глюкозурия). Тканевые запасы гликогена резко уменьшаются. Это в первую очередь касается печени, в которой нарушается синтез гликогена, что ведет к инфильтрации ее жирами — развивается жировая дистрофия печени; при этом в ядрах гепатоцитов появляются включения гликогена, они становятся светлыми («пустые» ядра).

С глюкозурией связаны характерные изменения почек при диабете. Они выражаются в гликогенной инфильтрации эпителия канальцев, главным образом узкого и дистального сегментов. Эпителий становится высоким, со светлой пенистой цитоплазмой; зерна гликогена видны и в просвете канальцев. Эти изменения отражают состояние синтеза гликогена (полимеризация глюкозы) в канальцевом эпителии при резорбции богатого глюкозой ультрафильтрата плазмы. При диабете страдают не только почечные канальцы, но и клубочки, их капиллярные петли, базальная мембрана которых становится значительно более проницаемой для сахаров и белков плазмы. Возникает одно из проявлений диабетической микроангиопатии — интеркапиллярный (диабетический) гломерулосклероз.

Сахарный диабет матери. У детей раннего грудного возраста в ряде случаев обнаруживаются избыточные отложения гликогена в миокарде, почках, печени, скелетных мышцах. «Этот вторичный транзиторный гликогеноз» наблюдается при СД матерей (то есть речь идёт о проявлениях диабетической фетопатии) и проходит через несколько недель после рождения.

Наследственные углеводные дистрофии, в основе которых лежат нарушения обмена гликогена, называются гликогенозами. Гликогенозы обусловлены отсутствием или недостаточностью фермента, участвующего в расщеплении депонированного гликогена, и относятся потому к наследственным ферментопатиям, или болезням накопления. В настоящее время хорошо изучены 6 типов гликогенозов, обусловленных наследственной недостаточностью 6 различных ферментов. Это болезни Гирке (I тип), Помпе (II тип), Мак-Ардля (V тип) и Герса (VI тип), при которых структура накапливаемого в тканях гликогена не нарушена, и болезни Форбса-Кори (III тип) и Андерсена (IV тип), при которых она резко изменена.

Морфологическая диагностика гликогеноза того или иного типа возможна при исследовании биопсии с помощью гистоферментных методов, а также с учетом локализации накапливаемого гликогена.

Болезнь фон Гирке . Заболевание начинается в раннем детском возрасте проявлениями гипогликемии и кетонемии. Характерны развитие вторичного гипофизарного ожирения (жир откладывается главным образом на лице, приобретающем «кукольный» вид), увеличение в размерах почек, значительная гепатомегалия, обусловленная не только углеводной, но и жировой дистрофией гепатоцитов. Отмечается значительное увеличение гликогена в лейкоцитах. Накопление гликогена в поражённых клетках столь значительно, что они остаются PAS-положительными даже после фиксации материала в формалине. Большинство детей погибает от ацидотической комы или присоединившейся инфекции.

Болезнь Помпе (гликогеноз типа II, 17q25.2-q25.3, ген GAA) — дефицит лизосомной α-1,4-глюкозидазы — приводит к поражению сердца, поперечнополосатых и гладких мышц и проявляется в возрасте до одного года жизни отставанием в массе тела, кардиомегалией общей мышечной слабостью. Накопление гликогена в миокарде, диафрагме и других дыхательных мышцах способствует нарастающей сердечной и дыхательной недостаточности. Гликоген откладывается также в язык (глоссомегалия), гладких мышцах пищевода, желудка, что вызывает затруднение глотания, картину пилоростеноза, сопровождающегося рвотой. Летальный исход наступает в первые годы жизни не только от сердечной или дыхательной недостаточности, но часто и от аспирационной пневмонии.

Болезнь Форбса—Кори . Накопление атипичного гликогена (лимитдекстрина) уже на 1-м году жизни приводит к умеренной гепатомегалии, небольшому увеличению сердца, гипотонусу скелетных мышц, что не является опасным для жизни, почему заболевание иногда называют доброкачественным гликогенозом.

Болезнь Андерсена . Нарушается структура гликогена (напоминает растительные полисахариды — пектины), откладывающегося в клетках печени, селезёнки и лимфатических узлов с развитием в последующем цирроза печени. Заболевание проявляется в конце грудного или в раннем детском возрасте в виде мелкоузлового цирроза печени с портальной гипертензией. При ЭМ-исследовании в цитоплазме поражённых клеток обнаруживаются включения аномального гликогена, состоящего из тёмной массивной центральной части (образованной гранулярным и ветвистым материалом), окружённой светлым тонким периферическим ободком.

Болезнь Мак-Ардля . У больных (как правило, в возрасте старше 10 лет) наблюдаются боли в мышцах, общая слабость после физической нагрузки. В ряде случаев отмечается тёмный цвет мочи из-за присутствия в ней миоглобина. В состоянии покоя указанная симптоматика не наблюдается. Изменения затрагивают только скелетную мускулатуру, в цитоплазме мышечных волокон находятся PAS-положительные включения гликогена. Прогноз благоприятен.

Углеводные дистрофии, связанные с нарушением обмена гликопротеидов.

При нарушении обмена гликопротеидов в клетках или в межклеточном веществе происходит накопление муцинов и мукоидов, называемых также слизистыми или слизеподобными веществами. В связи с этим при нарушении обмена гликопротеидов говорят о слизистой дистрофии.

Микроскопическое исследование. Оно позволяет выявить не только усиленное слизеобразование, но и изменения физико-химических свойств слизи. Многие секретирующие клетки погибают и десквамируются, выводные протоки желез обтурируются слизью, что ведет к развитию кист. Нередко в этих случаях присоединяется воспаление. Слизь может закрывать просветы бронхов, следствием чего является возникновение ателектазов и очагов пневмонии. Иногда в железистых структурах накапливается не истинная слизь, а слизеподобные вещества (псевдомуцины). Эти вещества могут уплотняться и принимать характер коллоида. Тогда говорят о коллоидной дистрофии, которая наблюдается, например, при коллоидном зобе.

Причины слизистой дистрофии разнообразны, но чаще всего это воспаление слизистых оболочек в результате действия различных патогенных раздражителей (катаральное воспаление).

Слизистая дистрофия лежит в основе наследственного системного заболевания, называемого муковисцидозом, для которого характерно изменение качества слизи, выделяемой эпителием слизистых желез: слизь становится густой и вязкой, она плохо выводится, что обусловливает развитие ретенционных кист и склероза (кистозный фиброз). Поражаются экзокринный аппарат поджелудочной железы, железы бронхиального дерева, пищеварительного и мочевого тракта, желчных путей, потовые и слезные железы. Исход в значительной мере определяется степенью и длительностью повышенного слизеобразования. В одних случаях регенерация эпителия приводит к полному восстановлению слизистой оболочки, в других — она атрофируется, в дальнейшем склерозируется, что, естественно, отражается на функции органа.

МУКОПОЛИСАХАРИДОЗЫ И МУКОЛИПИДОЗЫ .

К этой группе относятся болезни накопления, развивающиеся при мутациях ферментов, обеспечивающих метаболизм сфинголипидов, гликолипидов и мукополисахаридов. Существует множество нозологических единиц, в значительной степени перекрывающих друг друга. Классификация заболеваний запутана. Для больных с многими страданиями рассматриваемой группы характерен фенотип гаргоилизма.

источник